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091, India

Received 17 August 1998

Abstract. We have formulated the generating function for the product of Laguerre polynomials
and is used to determine the Franck–Condon factor for multiphoton transition between the
electronic states on the adiabatic potential surfaces of the model displaced harmonic oscillator
system. It is shown that for the multiphoton transition, the independent displacements from
the successive adiabatic curves can be calculated from the experimental measurement of the
Franck–Condon factor.

In this letter we draw attention to an important relation satisfied by the Laguerre polynomial
which is used to determine the Franck–Condon factor [1] for multiphoton transition between
the electronic states on the adiabatic potential surfaces of a model displaced harmonic
oscillator system. Although to determine the Franck–Condon factor a good knowledge of
the real potential surface is necessary, there are, however, a few models [2] where one can
evaluate them explicitly.

The relation we propose here is the following generating function for the product of the
Laguerre polynomial:
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whereLkm denote the Laguerre polynomial andmi ’s are positive integers including 0.j
can be any integer wherej − 1 will dictate the number of summation.m andn are two
non-negative integers.xi ’s are real variables. Here we adopt the definition of a Laguerre
polynomial as

Lm−nn (x) =
n∑

k=max(0,−(m−n))
(−1)k

m!xk

k!(n− k)!(m− n+ k)! . (2)
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Whenm− n > 0, equation (2) corresponds to the Laguerre polynomial as given in [3].
However, equation (2) is valid for negative value ofm−n. This gives a slight extension of
the expression given in [3]. Formula (2) is equivalent to the expression used by Perelomov
in [4] and in [5]. Thus, for example, one has,
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2
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and
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in addition to the usual relations given in [3].
For j = 2, the formula (1) reduces to
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Equation (4) can be proved by using the well known generating function [3]
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and the recurrence relation

(m+ 1)Ln−1
m+1(x)− (m+ n)Ln−1

m (x)+ xLnm(x) = 0 (6)

where equation (6) directly follows from formula (2). Now, with repeated use of
equation (6), the succesive relations for higherj values, i.e. equation (1), can be proved by
the method of induction.

To calculate the Franck–Condon factor of transition we describe the molecular system
which is situated in the external radiation fieldE(R, t) with an interaction potential as
Vint = −d · E(R, t), whered is the dipole moment of the molecule. The total electronic
Hamiltonian can be written as

He(r, R) = Te + Vee(r)+ VNN(R)+ VeN(r, R) (7)

with Vee, VNN(R) and VeN(r, R) as the electron–electron, nuclear–nuclear and electron–
nuclear interactions, respectively.r and R are the electronic and nuclear coordinates,
respectively, andTe is the electronic kinetic energy operator. In the electronic Hamiltonian
we have neglected the kinetic energy part,TN , of the nuclear motion. Thus taking the nuclear
coordinate as a parameter the corresponding eigenstate and eigenvalues can be given as

He|φn〉 = Un(R)|φn〉 (8)

where the energy eigenvaluesUn(R) are the adiabatic potential surfaces,{|φn〉} forms a
complete orthonormal set of electronic states. The time-dependent state of the total system
can be given by

|9(t) >=
∑
n

ψn(R, t)|φn〉. (9)

The coefficientsψn(R, t) can be regarded as the wavefunctions for the nuclear motion.
Thus the time-dependent Schrodinger equation becomes

H |9(t) >= ih̄
∑
n

ψ̇n(R, t)|φn〉 (10)



Letter to the Editor L773

and the equation of the nuclear wavefunction is given by

[TN + Um(R)]ψm(R, t)−
∑
n

〈φm|d · E(R, t)|φn〉ψn(R, t) = ih̄
∂

∂t
ψm(R, t). (11)

This neglect of nuclear kinetic energy operator on the electronic wavefunction is precisely
the Born–Oppenheimer approximation [1].

We introduce the vibrational eigenfunctions on the adiabatic energy surfaces by the
eigenvalue equations

[TN + Um(R)]umν (R) = �mν umν (R) (12)

whereumν (R) are the vibrational eigenfunctions of an electronic statem.
Now writing the nuclear wavefunction in terms of the vibrational eigenfunction as

ψm(R, t) =
∑
ν

Cmν (t)u
m
ν (R) (13)

we obtain

ih̄
∂
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Cmξ (t) = �mν Cmξ (t)+

∑
ν,n

µnmE0〈umξ |unν〉Cnν (t) (14)

where the overlap integral element〈umξ |unν〉 is the Franck–Condon factor determining the
coupling between the levels.

Thus the Franck–Condon coupling requires the knowledge of the detailed structure of
the energy surface. For a two-state displaced oscillator model we have
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whereH1(H2) is the vibrational Hamiltonian corresponding to electronic level 1(2).P,M,
1E and �1 are the momentum, mass, energy difference between level 1 and 2 and
frequency of the oscillators, respectively.R is the coordinate of the oscillators andR0

is the displacement of the excited state potential from the ground state.

One can define the displacement operator [6]D(ξ) = e−i R0P
h̄ such that

D(ξ)RD†(ξ) = R − R0 (16)

with ξ = R0. Starting from the eigenvalue equation

H1|u1
ν〉 = h̄�1ν|u1

ν〉 (17)

we obtain

(H2−1E)|u2
ν〉 ≡ D(ξ)H1D

†(ξ)|u2
ν〉 = h̄�1ν|u2

ν〉. (18)

Thus we find

|u2
ν〉 = D(ξ)|u1

ν〉 (19)

and the Franck–Condon factor now becomes

|〈u2
ν |u1

µ〉|2 = |〈u1
ν |D(ξ)|u1

µ〉|2. (20)

Now we consider a multiphoton transition, say ak-photon process, through the displaced
oscillator model where each potential surface is harmonic with its centre displaced from
the successive lower electronic state asR1, R2, R3 . . . Rk respectively, and the successive
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differences in energy become1E1, 1E2 . . . 1Ek etc. Thus the adiabatic curves of the
electronic states are
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In what follows we construct the unitary displacement operators asD(ξ1),D(ξ2), . . . D(ξk)

with ξ1 = R1, ξ2 = R2− R1, ξk = Rk − Rk−1,

D(ξi)RD
†(ξi) = R − Ri + Ri−1 (22)

whereD(ξi) = e−
i
h̄
ξiP .

To obtain the Franck–Condon factor for ak-photon transition one needs to calculate the
quantity |〈ukν |u1

µ〉|2. The final state can be obtained as

|ukν〉 = D(ξk)D(ξk−1) . . . D(ξ2)D(ξ1)|u1
ν〉. (23)

By using the relation [7]d(ξ,m, n) = 〈umν |D(ξ)|unν〉 = e−
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Now using the summation relation as given in equation (1) in the above equation one can
find
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from which the Franck–Condon factor,F can be calculated.
For example, for a three-state system with the two-photon transition,F can be given

by

F = |exp[−2R1R2](R1+ R2)
m−nLm−nn [(R1+ R2)

2]|2. (26)

Thus the independent displacements from the successive adiabatic curves characterize the
factorF in a nontrivial way and can be found explicitly from the experimental measurement
of the factorF .

In conclusion, in this letter we have proposed the generating function for the product
of the Laguerre polynomials and discussed its application to calculate the Franck–Condon
factor for multiphoton transition of a model displaced harmonic oscillator system. In this
context, we have given a slightly generalized form of the Laguerre polynomial. We hope
that the relation will be more applicable elsewhere.

The author is grateful to Professor Kamal Bhattacharyya for his interest in this work and
for kindly reading the manuscript.
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